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FOREWORD 

An analytical development is described that proposes a means 

for  determining the extent and severity of thermal  stratification of a 

side wall heated container and the associated self pressurization. 

The work has  been done a s  p a r t  of a consultation and advisory 

program supported by the National Aeronautics and Space Administration- 

Lewis Research Center,  Centaur Pro jec t  Office under Order  Number 

C-69726. 
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A Method for Analyzing Thermal Stratification and Self 
Pressur iza t ion  in a Fluid Container 

R. W. Arnett  and D. R. Millhiser 

Introduction 

The phenomena of thermal  stratification in cryogenic liquids has  

been observed for severa l  years  [Huntley, 1960; Neff, 1960; Scott, et. al., 

1960; Swim, 19601. 

standing of the causative mechanisms has been recognized and has  resul ted 

in  numerous investigations of the problem being reported in the l i terature  

[ Robbins and Rogers, 1964; Schmidt, et  al., 1961; Schwind and Vliedt, 

1964; Tatom, e t  al., 1964; Tellep and Harper ,  19631. 

In  recent  years the importance of a better under- 

Most of the referenced work has  been oriented. toward the thermally 

stratif ied layer  as it affected liquid pumping due to reduced NPSH. Only 

a small amount of work is reported on the effect of thermal  stratification 

on ullage p r e s s u r e  r i s e  in a sealed container. 

have touched on this aspect  but did not consider the effect of a possible 

temperature  gradient in the ullage gas. 

temperature  change through the gas has  been reported by Maxson [ 19631 

and Schrxiidt, e t  a?. , [ 19611. 

Tellep and Harper E19631 

The presence of a sizeable 

Coupling of the liquid surface to the gas space in such a manner 

a s  to allow prediction and measure the influence of condensation o r  vapori-  

zation has  proven to be a difficult task. This presentation descr ibes  

a means for predicting: (1) the extent of thermal  stratification in the 

liquid, (2 )  the temperature  gradients in the ullage space, and ( 3 )  the 

amount and direction of mass and energy interchange due to liquid-gas 

phase transformation at the liquid-gas interface. 



Boundary Layer Equations 

An analytical method for predicting the volume of liquid involved 

in thermal  stratification and the temperature  pattern existing in the 

stratif ied layer appears  to be quite complicated. 

to influence the problem such as container geometry, heat t ransfer  rate 

and location, fluid propert ies ,  force fields, and the variation with t ime 

of any o r  several  of these factors.  

may reveal that the importance of some of these pa rame te r s  i s  smal l  

o r  negligible, and simplified expressions may be used for satisfactory 

predictions. However, for this development the effect of factors  as 

appear to be relevant will be retained although the development of the 

equations is approximate in  some areas .  

Many factors  appear 

Further  study and experimentation 

Since the immediate interest  i s  the Centaur fuel tank the general  

shape of this tank is  assumed,  i. e. , a cylindrical portion terminated at 

the top by a conical nose piece and closed at the bottom with a flat end. 

(See figure 1. ) 

since it i s  certain that heat t ransfer  through the bottom will be assimi- 

lated in the body of the fluid in either case. 

This latter assumption while not exact seems justifiable 

The general  method of attack follows that of Ecke r t  and Jackson 

[ 19511 and Von Karman [ 19461 a s  modified for  application to a cylindrical 

and conical shape. The flow pattern that appears  f rom the approach used 

he re  i s  comprised of a f r e e  convection boundary layer  forming adjacent 

to and flowing upward along the cylindrical walls. This layer  proves to 

be turbulent in  nature after only a short  distance of t rave l  f rom the tank 

bottom corner (G::: 2 l o l l )  for the Centaur conditions. Thermal  energy 

passing through the wall i s  ca r r i ed  by this boundary layer  through the 

bottom of the thermally stratif ied layer  thus delivering the warmed fluid 

to the stratified layer.  

temperature  increase  over the bulk tempera ture  exists,  it is  quite 

apparent that thermal  energy is being delivered to the fluid in this layer  

RX 

Since the s t ra t i f ied layer  i s  a region where a 

2 



and this  energy must  come pr imari ly  f rom the boundary layer.  

boundary layer ,  as such disappeared at the lower boundary of the 

stratif ied layer ,  this would imply dumping of all the boundary layer 

energy at the bottom of the stratified layer.  

apparent what mechanism would cause the distribution of this  energy 

throughout the stratif ied layer  with a non-negative temperature  gradient. 

It s eems  reasonable that the boundary layer  begins to lose  m a s s  a s  soon 

as  it encounters the stratif ied layer and thus decays throughout its 

t r ave r se  of the warm l aye r s  of fluid. 

whether a complete decay occurs  o r  i f  a finite boundary layer  flow still 

exis ts  at the surface causing "radially inward" flow to exist  at the 

surface. 

boundary layer.  Such a decay must be manifested by flow out f rom the 

boundary layer  as  it t r ave r ses  the stratif ied layer.  This flow would be 

composed of the coolest fluid in the layer  namely, that  fluid adjoining the 

inner  face of the boundary layer.  

the wall  would be delivered to the surface l aye r s  and cause the la rges t  

t empera ture  increase  to occur there,  as  in fact  does seem to be the case. 

If the 

If such occurred, it is not 

There i s  some uncertainty as  to 

The development reported h e r e  a s sumes  complete decay of the 

In this way the warmer  fluid adjoining 

Development of the expressions proceeds along l ines  similar to 

Von Karman [ 19461 and Ecker t  and Jackson, [ 19511 modified as  required 

for  a conical shape ( see figure 2). 

Following Ecke r t  and Jackson, [ 19511 the temperature  and velocity 

distribution in the boundary layer  is assumed to be represented by 

and 

3 



Forces  acting in  the ver t ical  direction on the element under 

consideration a r e  made identically equal to the ver t ical  change in  

momentum thru the element; Momentum change E & F o r c e s  (x), 

The momentum through the lower plane i s  given by 

zT&%!+f;&'(Ry)(& 0 J 

and the change in  momentum in t ravers ing the element is  then 

Buoyant forces  acting on the element a r e  described by 

directed upward. Setting 

Pa -P = p m  
resul ts  in 

Shear forces  acting along the wall amount to 

directed downward. 

The argument i s  made that tempera ture  changes a r e  small and 

therefore there i s  little change in  p f rom /"a and it may be assumed 

that ///& 9 / , except for ar i thmetic  differences such as  occur s  in  the 

4 



buoyancy te rm.  Here this difference is taken ca re  of by introducing 

, the volumetric coefficient of expansion. 

Using the Blasius correlation for wall shear  s t r e s s  [ Eckert  and 

Drake, 1959, p. 1431, 

the expression for shear force becomes 

When the indicated integrations a r e  performed on equations (1) 

and (2a) ,  they become 

and 

Equating the sum of forces to the change in  momentum, 

Simplifying 
m 2 y  &fo.o.%% RU26(/ - 

By combining the Reynolds analogy [ Ecker t  and Drake, 1959, p. 2031, 

relating viscous shear s t r e s s  and conduction heat t ransfer ,  with the 

Blasius correlation and a correction t e r m  for Pr variation due to Colburn 

[ Jakob, 1949; Ecker t  and Drake, 1959, p. 3241 it is  found that 

5 



Making this substitution the identity is now 

It i s  now assumed that and 6 have a similar mathematical 

fo rm and a r e  given by 

up c , x m  , 

6 = cz Xh . ( 6) 

Making this substitution on the left side of the identity produces 

Performing the indicated differentiation, this becomes 

Collecting all u and 6 t e r m s  on the right side of the identity, 

6 



Combining expressions (7 )  and (8)  gives 

For  a cylindrical shape dR/dx = 0 , and the middle bracketed 

t e r m  on the lef t  side disappears. 

and the t e r m  involving Xfi/k? 

to that developed by other investigators [Morse ,  19621. 

For  a n  infinite flat plate R+m , 
disappears leaving a n  equation similar 

In order  that the above identity holds for all values of x in the 

range of interest  the exponents of z must  be equal, thus the following 

conditions must  hold: 

5n -3m = 7 ~ - n  
4 4 

9 n  -3m 
4 

Zmtn-1- 
Z m f Z n - /  = 

( 9 )  

Solution of the first se t  of equations leads to m =  7 3 , 17 = - 5 
7 Y 

which turns out to be consistent with the second set  of equations. The 

first  se t  of equations would be valid for a flat vertical  plate while both 

the f i r s t  and second must hold for a cylindrical shape. 

ca l l s  for /? 
A conical shape 

to be a linear function of 7, and thus /?= & - X A &  Y 

When the t e r m  involving d@/Jx i s  retained, a third equation 

emerges  which has  no direct  solution and i s  inconsistent with the f i r s t  

two, i. e. , zm 7'/7 4 -00 . 
assumption of constant values for m and 0 

they would appear to vary with the cone half angle and perhaps with 

ver t ica l  location. 

It appears that with the conical shape the 

may not be valid; ra ther  

7 



Due to the complexity of obtaining a solution giving values for /n 

and I 7  

element involved for the stratif ied layer growth in the nose cone additional 

t ime was not spent on this phase. 

boundary layer consisting of 

to suit this las t  condition coupled with the relatively short  t ime 

Thus expressions a r e  obtained for the 

3 u= G , x r  
and 

Determination of the values of c, and cz  i s  next accomplished. 

Thermal energy entering the bottom of the element under consider- 

ation is given by 

The reference datum used here  i s  the initial bulk fluid condition. 

in  thermal  energy through the element i s  then 

Change 

Energy entering through the wa l l  i s  given a s  

Fluid entering o r  leaving through the inner face of the boundary layer 

enters  at the datum condition and therefore has  zero energy. 

the assumption /?&B "/  , the energy equation then becomes 

Utilizing 

8 



Substituting for  eW f rom equation (4b) resul ts  in  

Further  substiuting for and 6 f rom (6)  produces 

Performing the differentiation: 

Two equations for exponential values can be obtained f rom this as  was 

possible with the previous equation. These a r e  

m f 5 7 - 4  =o 
4 

m +9n -4 + -- 
4 and 

5 The values previously obtained of 177 =+ , n = 7 

equation but a r e  obviously not a solution to the second equation which 

s tems f rom the conical shape. 

arguments  this last equation was not considered further. 

satisfy the first 

Because of previously mentioned 

9 



When the thermal  energy equation i s  stated with the above values 

for  and ff inserted,the following expression resul ts :  

Solving for C, , 
4 

( 13) 

Returning to the momentum equation and inserting values for h7 and 

1'7 , resul ts  in 

Substituting for 6, f rom ( 1  3) gives 

and 

10 



For  ease of handling the following substitutions a r e  made: 

x" 
K, = 22.736 
Kp = / -  O . Z W 7 C Z p  

This now gives 

Therefor e ,  

and 

Thus, 

8 

For the case of a ver t ical  flat plate the t e rms  KZ, K4, K6, and .ec? Y 

all reduce to 1. Which then results in 

11 



and 

Simplifying, 

and finally, 

o r  

I 

This compares closely with other investigators '  resul ts  for a ver t ical  

flat plate when evaluated for B=/  . 

For  the case of either a cylinder with constant finite radius o r  a 

cone with a varying finite radius an  i teration procedure can be used to 

evaluate and 62 . This i s  accomplished by assuming a value for  Gz 

12 



(a  first approximation would be from the equations for a ver t ical  flat 

plate), calculating the values for K 

comparing with the assumed value. 

Kq, and K6, evaluating C and 

This procedure would need to be 
2' 2' 

2 
repeated for the various values of x .  As an example the constant C 

has a value of approximately 0. 35 a t  the liquid surface in the Centaur 

LH tank for the conditions of = c! 02 W/cm' P= k 5ah. and Cfw 2 
acceleration. F o r  the same conditions on a ver t ical  flat plate, C has  

a value of approximately 0. 25. Only slight variations in the value of C 

and C 

p r  e s sur e. 

2 

2 
a r e  experienced with moderate changes in heat flux and ullage 

1 

F r o m  the above it is possible to predict  the velocity and thickness 

of the f r ee  convection boundary layer at any point, using either i teration 

for determining the constants o r  an approximation for  the mean value. 

Using these equations it is seen that a different constant is deter - 
mined for the cylindrical portion than for the conical portion. 

difference is par t ly  due to the choice of measuring thickness perpendic- 

ular to the tank axis while velocity i s  measured paral le l  to the tank wall. 

An effect  due to the sloping surface i s  a lso present  regard less  of the 

coordinate system chosen. 

a c o r r e c t i o r i  terw. v - u s t  he applied to the boundary layer  equations in 

o rde r  to a s s u r e  continuity of mass  flow and boundary layer  thickness at 

the cylinder -cone transition. Using subscript  /7 to designate conical 

nose section, the expressions a r e  writ ten 

This 

Because of the differences mentioned above 

13 



where the subscript 

To determine the value of F i t  is necessary that the boundary layer 

thickness perpendicular to the wall be the same regardless  of which 

C designates the cylindrical portion of the tank. 

2 

equation is used at the limiting value of X = f., . Thus 

and 

Likewise it i s  required that 0 have the same value at X = & , 
and it i s  observed that 

and that 

Therefore 

and 

Boundary layer parameters  of thickness and velocity can then 

be stated for both the cylindrical and conical portion of the tank and still 

preserve  the continuity of m a s s  flow. 

14 



Growth of the Stratified Layer 

Thickness of the stratified layer will be designated by A . 
expression relating boundary layer flow to growth r a t e  of the stratif ied 

layer i s  given as 

An 

where d@ is the volume flow ra t e  in  the boundary layer at the bottom 

of the stratified layer,  

layer,  and 

i s  the cross-sectional a r e a  of the boundary 

i s  the entire tank cross-sectional a r e a  at the same 

location. Expressions for the above a r e  given as 

= 2XRA - 0027B 

Ag =~riR,-$$)4 

Ad = T R ~  . 
and 

Introducting these into (18) and rearranging, yields 
dA - - -  at A* - A ~  

- - 

An explicit integration i s  difficult he re  since 4 , 64 , and & 
However a numerical  integration will are  o r  may  be functions of A 

permi t  determination of 

. 
a s  a function of time with sufficient accuracy, 

15 



Stratified Layer Temperature Gradient 

The model employed here  uses  a decaying f r ee  convection boundary 

layer with a n  initial m a s s  flow at the stratified layer lower surface equal 

to that entering from the boundary layer existing in  the lower regions of 

the tank ( see  figure 3) .  

Temperature and velocity distribution through the boundary layer 

a r e  assumed to be similar to those used previously for the boundary 

layer,  i. e . ,  

and 

Bulk liquid a t  temperature T i s  considered to be the datum 
B 

condition. 

The decay of the boundary layer as  it t raverses  the stratified 

layer ( s e e  figure 3) i s  forced by assuming the relations 

and 

A development parallel  to that made previously i s  used. 

Momentum entering the element i s  

and the change in  momentum i s  

16 



Buoyant force acting upward is 

Shear force acting downward i s  

Equating l b  to the sum of 2c and 3b resul ts  in  

Evaluating integrals and dividing out constant te rms ,  

Substituting for and Tw f rom the Blasius correlation 

and Reynold’s analogy, produces 

17 



After performing the differentiation and simplifying this becomes, 

- c?m& d-q /  - 8 ?F 
&5u#r . 

This equation i a  exactly analogous to the one developed ear l ie r  for  

the growing boundary layer ,  and matching values for and r a r e  

obtained, i. e . ,  

3 5 p 7  - -  ) I + = -  
7 .  

This produces 

Turning now to a thermal  energy balance, the thermal  energy 

entering the element i s  
r 4 r  

and the change in energy through the elment i s  

7 

Energy input through the heated wall i s  

The energy flow ac ross  the inner face i s  dependent upon the m a s s  

flow across  this face which in  turn i s  equal to the change in  m a s s  flow 

crossing the element. Entering the lower face there  is a m a s s  flow of 

18 



and the change in  mass flow i s  

Energy then enters  in  the amount 

Equating energy change to energy entering the element gives 

The energy movement across  the inner face of the element is  

included here  since m a s s  crossing this boundary in the stratified layer 

does so at a temperature other than the bulk temperature,  thus carrying 

energy with it. 

Simplifying this expression produces 

E valuating integrals give s 

19 



Substituting for  f rom the Blasius -Reynolds analogy 

correlation (equation 4a) produces 

Introducing values for 5 and 9 f rom (19)  resu l t s  in  

Performing the indicated differentiations : 

I 20 



Note that the last three t e rms  on the right side have identical t e r m s  of 

the same sign on the left side, thus canceling each other and the equation 

becomes 

Rearranging resul ts  in  

For  a right circular cylinder this reduces to 

The above differential equation can be most  readily solved on a 

digital computer by numerical integration to obtain tfae 
of t . 

a s  a function 

Ullage Space Temperature Gradient 

Expressions developed previously for boundary layer growth and 

stratif ied layer growth rate  a r e  valid in the ullage space up to the point 

at which the stratified layer fully occupies the ullage space. However, 

temperature  gradients in the stratified layer will not be represented 

2 1  



accurately by the above developed expression. 

constant wa l l  heat flux used previously will not apply in  the region where 

the wall i s  wetted by vapor and large temperature increases  may occur. 

Experimental resul ts  [ Maxson, 19631 demonstrate that large temperature  

increases  can be realized in the ullage space. 

differences a modification of the equation developed for the liquid phase 

i s  in  order.  

The assumption of 

A s  a resul t  of these 

Temperature and velocity profiles in the boundary layer a r e  

assumed to be of the same form a s  before. 

as it t raverses  the stratified layer i s  a lso assumed to take the same 

pattern. 

expressions for the constants and exponents being obtained, 

the energy equation a s  it pertains to the stratif ied layer proceeds along 

parallel  lines up to the point where differentiation i s  to be performed. 

At that point, the equation is 

Decay of the boundary layer 

The momentum equation i s  developed a s  previously with identical 

Setting up of 

Heat transfer through the wall, fN , i; now assumed to be 

proportional to the temperature difference. Thus 

where A is the overall  coefficient of heat t ransfer .  Now 

22 



Therefor e 

i -  

I -  

Making this substitution together with the substitution for $ and 

@ leads to 

-4fter performing the differentiation and collecting t e rms  this become j: 

Solution of this equation to obtain as a function of 2 is 

accomplished by a combined iteration and numerical  integration computer 

program. 0 ) the vapor temperature 

is  that of saturated gas, i. e. , %L -0  , 

Below the stratified layer (i. e. , t 

2 3  



Self Pressurizat ion Computation 

Having obtained, for a particular time, the temperature pattern in 

the ullage space a p res su re  i s  now determined for the ullage space that 

is  compatible with the temperature variation and the mass present  in the 

ullage. To accomplish this a differential volume element described by 

is  used. 

Note that the variable ,@ introduced he re  i s  a variable over the 

entire height of the ullage space (including the above named t ) regard-  

l e s s  of whether the ullage stratified layer has  occupied the entire height 

(figure 1). 

The m a s s  contained in  this element i s  then given by 

l and the total m a s s  by 

JO 

p is a function of the local temperature  and p res su re  which i s  

symbolized a s  

while R is  a function of and i s  given by 

R=R,-P&, , 

Since the previous determination gave 8 as  a function of E , and 
5.e 

therefore of 9 where 

as  well as  the layer  where a temperature gradient exists ( 

the total mass  may be determined from 

includes the region below the stratif ied layer 

0 <2 ) y  

24 



where a combined i teration and numerical integration procedure is again 

used. The expression is  numerically integrated using various assumed 

p res su res  until the computed mass compares with the known m a s s  from 

initial conditions o r  previous steps. 

procedure has a matching saturation temperature  which i s  compared with 

the liquid surface temperature  obtained f rom the thermal  analysis of the 

stratif ied liquid layer .  If a satisfactory match i s  not made, then vapor- 

ization of liquid o r  condensation of g a s  is permit ted to bring the liquid 

surface temperature  into equilibrium with the computed pressure .  

The p r e s s u r e  obtained f rom this 

Vaporization will occur i f  the liquid surface temperature  obtained 

f r o m  (11) exceeds the saturation temperature  determined above. 

liquid surface layer  of thickness Z, at a constant temperature  equal to 

the saturation temperature  i s  assumed a s  shown in figure 4a. Thermal  

energy proportional to the shaded a r e a  i s  removed f rom the liquid by 

vaporization and the mass  of liquid vaporized computed f rom 

A 

When the liquid surface temperature i s  l e s s  than saturation tempera-  

tu re  condensation i s  allowed until the liquid temperature  i s  r a i sed  to the 

saturation point. 

An e r r o r  function expression [Schmidt, et al., 19611 i s  assumed to 

represent  the temperature  variation as  though the surface temperature  had 

experienced a step change in temperature f rom Ts to T 

is given as 

The temperature pattern assumed i s  shown in figure 4b. 

The equation 
S' 

25 



and t i s  taken a s  the t ime interval  used in  
r/ where @ = zc 

(18a). An i teration procedure i s  used to determine a z, where the f)ae 
matches the #a 
the m a s s  transport ,  however, the t e r m  ( 8 
negative signifying removal of m a s s  f rom the ullage space. 

f rom (12g). Equation (24) is  again used to determine 

-es ) will now be ae,,, 

Use of Equations 

Combining of the above developed equations to provide a quantitative 

solution f o r  a tank self pressurizat ion problem proceeds as  outlined be-  

low. 

The depth of the stratif ied layer ,  A ,  i s  determined f r o m  (18a). 

A numerical integration of ( 18a) i s  made using a selected depth increment,  

DA, to determine the corresponding t ime increment,  Dt. 

graph of I D A  versusLDt suffices to establish the variation of A with t. 

A tabulation o r  

In order  to accomplish the above integration cer ta in  prel iminary 

determinations must be made. 4 and 6. may be computed f rom (6)  

using the values of m = 3 / 7 ,  n = 5 / 7  and (13a) and (14a) to determine the 

constants. 

taken care  of by repetitive use of equations such as  (16) and (17). R, 
as  well as  4 and 64 , must  be evaluated at the bottom of the stratif ied 

layer.  

Changes in tank shape o r  heat t ransfer  with height may be 

Once the ver t ical  growth with t ime of the stratif ied layer  i s  obtained 

the temperature gradient within the stratif ied layer  may be determined 

using (12g). , and RA a r e  evaluated at the 

bottom of the stratif ied layer.  

Again the t e r m s  4 , 6A 

In all of the above calculations the fluid proper t ies  a r e  calculated 

at bulk liquid conditions. 
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Para l l e l  calculations to establish stratif ied layer  depth as a function 

of t ime and the temperature  gradient in the ullage space must  be accomp- 

l ished at this point. 

liquid phase i s  used to establish stratified layer  depth with fluid propert ies  

evaluated at saturated gas  conditions. Equations ( 6 ) ,  (13a),  (14a),  and 

(18a) a r e  used for  this determination. The temperature  gradient through 

the gas  stratif ied layer  i s  computed by a combined numerical  integration 

and i teration solution of (21a). 

An identical procedure to that described for the 

Having established a temperature pattern in the ullage space, a n  

i terat ion procedure i s  used to establish the ullage space p res su re  f rom 

(23a). 

m a s s  in the ullage volume by an iterative adjustment of pressure .  

Temperature  below the stratified layer  in the ullage i s  assumed to be that 

of saturation. 

determined p res su re  is then compared with the liquid surface temperature  

determined previously. 

densation o r  vaporization and the m a s s  vaporized determined f rom (24) 

is algebrically added to the ullage m a s s  present  at the start of the t ime 

interval. 

The m a s s  calculated from (23a) i s  forced to be equal to the initial 

The saturation temperature corresponding to the above 

Mass interchange i s  determined for either con- 

This new m a s s  i s  now used for the next t ime interval. 

Repetitive application of the above procedure for successive t ime 

increments  will enable a determination of ullage p re s su re  as a function 

of time. 

liquid and the p re s su re  in the ullage space must  be determined for 

identical  t imes.  

In the interface calculations the temperature  profile in the 

Boundary layer  behavior and temperature  gradient in the ullage 

space mus t  be computed f rom the beginning for each t ime increment  due 

to the change in fluid propert ies  which may occur as  a resu l t  of p r e s s u r e  

and t empera ture  differences. 
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, 

Figure 1. Assumed Geometry 
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ACCELERA T/ON 

1, 
X 

Figure 2. Element Considered F o r  Boundary Layer Growth 
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Figure 3 .  Element Considered F o r  Boundary Laye r  Decay 
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Nomenclature 

A - c ross  sec t iona rea  

c, I cz I f )  m , n, r,p - derived constants 

A -  

% - 
Y -  
h -  
K -  
R -  
L -  

4- 
M -  
P -  
B -  

8 -  
R -  

6 -  
R s -  
7 -  
t -  

U -  
V -  

u -  

x -  

Y -  
z -  
6 -  

P -  
Y -  

specific heat 

modified Grashof number, = 

acceleration 
A u z  

vapor space height 

substitutional t e r m  

thermal  conductivity 

liquid depth 

length of cylindrical tank 

mass 

p res su re  

Prandt l  number 

unit a r e a  heat flux 

tank radius 

cylinder radius 

radius a t  the liquid surface 

absolute temperature  

time 

local velocity in boundary layer  

equivalent f ree  s t ream velocity 

volume 

vertical  distance in tank 

horizontal distance f rom tank wall 

vertical  distance f rom bottom of stratif ied layer 

liquid diffusivity 

volumetric coefficient of thermal  expansion 

half angle of conical nose 
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Nomenclature ( continued) 

A -  
6 -  
h -  
8 -  
e, = 

e, = 

8 w  = 

e, = 

& =  
P -  

P -  

Y -  
n- 

= 

u -  

z -  

6 5 -  

B -  
L -  

1 -  
n -  
u -  
w -  
s -  
A -  
6 -  

stratified layer thickness 

boundary layer thickness 

e r r o r  function variable 

temperature difference, T - TB. 

i5 -7a 
dynamic v i  s co aity 

kinematic viscosity 

fluid m a s s  density 

viscous shear s t r e s s  

ver t ical  distance in  ullage space 

overall  tank wall heat t ransfer  coefficient 

Subs c ript  s 

ambient conditions (external to tank) 

at bulk fluid condition 

in  the cylindrical portion 

in  stratified layer 

i n  the conical nose 

in  the ullage space 

at tank wall 

saturated conditions 

at bottom of stratified layer 

pertaining to boundary layer 
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Appendix A 

Evaluation of Integrals 

1. 

to be evaluated. 

In the development of the preceding equations several  integrals need 

Following a r e  the detailed integral  evaluations. 

Each integral evaluated involves the t e r m  y/6. For  ease in 

handling the integrals the substitution y/6 = a was used. 

and 6 da = dy. 

when y = 6, a 1 .  

Thus 6 a = y ,  

To establish limits it is observed that when y = 0, a = 0; 

In a l l  of the integrals the relations 

and 

a r e  used. 

2. Evaluation of integrals. 

1 6 1 

(a) 0 u”dy=  0 6 U a  a 2 / 7 ( l  -a)’da = 6 3  0 a 2 l 7 ( l  - a)’da 
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37 /7 S I 7  1 6 1 7  28  2317 56 30 I7 70 
t -a u d y =  6U2(7) [$a - - a  2 +-a 23 --a 30 37 

14 4 4 1 7  28 5117 5817 6 5 / 7  l1 
0 t-a 65 

-- 
29 a t-a 51 --a 

11 

= 6U2(7) [ ( 

= 6U2(7) (3.7847985 -3. 7773250) = 0.052315 6 U2.  

t 28a 5117 -8a58/7 + /7 ] da 

6 5 1 7  

65 a 72 t - a  8 5 117 14 5 8  17 - -  a t -a 
56 
51 29 

-- 

t -  t -  

2 2  = 6 U ( 7 )  (3.08338993-3.08245574) = 0.0065393 6"v".  
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1 /7 
6 1 1 

( c )  s o e d y = s  68,(1 -a1 I7)da  = 6 8 . s 0  (1  - a  ) d a  

a /7 1 

= 68, [ a - - a  8 lo  = 6 0 . [ 1  -:]=0.12560,.,. 

1 /7  
1 

= $ U 6  f a1I7( l  - a)4 ( 1  - a ) da 
0 

3 6 1 7  1 -- 1 
+-a 36 

as17 30  I 7  4 2 
37 a 

--a +-a 
29 1 5  
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= e,u 6 (7)  ( 0 .  8088384 -0. 8036054) 

= 0.036631 e , w .  

6 1 

( f )  8uy dy =io 8,U6" a8I7( l  - a l l 7 )  (1  - a)4 da 
0 

1 

= 8,U b2 a8I7( 1 - all7) (1 - a)4da 
0 

-- 
44 a 

3 7 1 7  
+-a 4 

36  17 1 --a 9 +-a 37 43 

4 6 4  2 1 1  1 
t -  t -  37 

1 
= 8 w u 6 2 ( 7 )  [(E ' 23 29 
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6 
8uy dy = 8,U S2(7) (0.  57884018 - 0. 57815656) 

0 

= 0.0047853 e, u 6'. 

- t -  8 1 3  11 ' -)-(E 36 1 t q ]  29 

= 6 U(7) ( 0 .  42550505 - 0. 40459770) 

= 0.14635 6 U. 
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1 1 

uy dy = s  b 2 U  a8I7 (1 - a)4da = &'USo a8I7 ( 1  - a ) * d a  
0 

1517 2217 6 2 9 1 7  3 6 1 7  1 
+-a 

43 
--a 
9 

+-a 
29 

--a 
11 = 6 2 ~ ( 7 )  -a [ 1: 

= 62U( 7) ( 0 .  29681903 - 0.  29292929)= 0 .  027228  6 '  U. 
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Appendix B 

Use of (6a) to calculate boundary layer thickness requires  use of 

(13a) and (14a) to determine values for C1 and C2. 

conditions exist along the vertical  height of the vessel ,  the values of 

C1 and C2 may also change. 

increments and the divisions between these increments designated as  

XI, X 2 ,  * .  * X n  , then a n  adjustment can be made to a s s u r e  continuity of 

boundary layer thickness and velocity. 

Where varying 

If the vertical  height i s  divided into 

Handling of the expressions will be simplified by setting 

c1 = c, 

and 

C2 = C 6 .  

Then in  general 

and 

Now 

Let 

3 /7 u = c , x  

b = c 6 x  5 /7 . 

Then 
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A1 so 

I .  

U = Cu2 X3l7 t Fu2 , X 2 ' X * X 3 .  

Therefor e 

C U l X 2  3 /7 + Ful = G u a x 2  3 /7 t F , , ~  and F,2 = C U 2 X 2  3 /7 (2 - 1) t F,1. 

Gene rally then 

where 

Likewise for boundary layer thickness the general expression becomes 

where 

43 

The above procedure may be used where changes in wall heat  

t ransfer  or  inclination of the surface can be approximated by step 

changes in  values. 


